
Document Automation Architectures and Technologies: 
A Survey 

 

Mohammad Ahmadi Achachlouei1*, Omkar Patil*, Tarun Joshi, Vijayan N. Nair 

Corporate Model Risk, Wells Fargo, USA 

 

Abstract 

This paper surveys the current state of the art in document automation (DA). The objective of DA is to 
reduce the manual effort during the generation of documents by automatically integrating input from 
different sources and assembling documents conforming to defined templates. There have been reviews of 
commercial solutions of DA, particularly in the legal domain, but to date there has been no comprehensive 
review of the academic research on DA architectures and technologies. The current survey of DA reviews 
the academic literature and provides a clearer definition and characterization of DA and its features, 
identifies state-of-the-art DA architectures and technologies in academic research, and provides ideas that 
can lead to new research opportunities within the DA field in light of recent advances in artificial 
intelligence and deep neural networks.  

1 INTRODUCTION
Documents capture evidence and knowledge and convey information necessary for successful business 
processes that create value for stakeholders (Glushko & McGrath 2008). However, the manual steps 
involved in the creation of documents can be very time-consuming, resource-intensive, and prone to 
human error. Documents such as legal, technical, and clinical reports are usually highly structured and 
standardized, opening up a large potential to automate them. 

Document automation (DA) aims to reduce this manual effort in the document generation process by 
automatically integrating input from different sources and assembling documents conforming to pre-
defined templates. Automating the production of documents can save time, reduce cost, minimize risks, 
improve document quality, and minimize the human error that repetitive typing might introduce.  

There have been reviews of commercial solutions of DA, particularly in the legal domain (Glaser et al. 
2020; Dale 2019; Dale 2020), but to date there has been no comprehensive review of the academic 
research on DA architectures and technologies.  

The current survey of DA aims to achieve the following objectives: 

 Provide a clearer definition and characterization of DA and its features  
 Identify state-of-the-art DA architectures and technologies in academic research 
 Specify existing issues and bottlenecks in DA systems that can lead to new research opportunities  

                                                      
1 E-mail address: mo.achachlouei@wellsfargo.com 
* First and second authors contributed equally. 



To conduct the current survey, we used Google Scholar to target the peer-reviewed journals and
conference proceedings published by Elsevier, IEEE, ACM, Springer, and Taylor & Francis. The 
keywords used in the search comprise combinations of document automation, document assembly, 
document generation, document engineering, report generation, template construction, and natural 
language generation (NLG). Our main focus was on template-based automation of structured documents 
(e.g. legal, technical and scientific documents), but we also reviewed prominent studies on non-template 
NLG approaches which utilize linguistic grammar or end-to-end neural methods for data-to-text 
generation systems. We identified nearly 500 papers and, after reviewing paper abstracts, selected about 
250 papers for further review. At the end, we selected about 50 papers with highest relevance to our 
survey goals.  

The survey is organized as follows. Section 2 provides an overview of document definitions and standards 
as well as definitions of DA and its features. Section 3 summarizes the DA architectures and technologies 
identified in the reviewed studies. Section 4 discusses key findings, emerging trends, similarities, and 
differences of the reviewed DA architectures, as well as the relevance of each architecture for different 
applications, and proposes future research directions.  

2 DEFINITIONS AND STANDARDS

2.1 DOCUMENT DEFINITIONS
Document refers to “a writing conveying information” (Merriam-Webster 2021) that has content, 
structure, and presentational characteristics. We can identify a spectrum of document types (Glushko & 
McGrath 2008) with highly narrative style documents (e.g. novels) at one end and highly transactional 
documents (e.g. purchase receipts) at the other end and a variety of hybrid documents in between, 
including semi-narrative and semi-transactional documents such as legal documents and 
technical/scientific reports.  

The document engineering community defines a document as the union of two components: content and 
presentation (Gomez et al. 2014). The document content includes a template that defines the logical 
structure of the document, plus the components that instantiate the template. The document presentation 
includes the layout that defines exactly where each piece of content is to be placed and also how the piece 
will appear in the document. 

Automation refers to the “automatically controlled operation of an apparatus, process, or system by
mechanical or electronic devices that take the place of human labor” (Merriam-Webster 2021) 

Document automation is not a well-understood, clearly defined term (Lauritsen 2012). Document 
automation is the term used by many commercial tools that aim to automate legal documents (for a survey 
of such tools, see Glaser et al. 2020).  Table 1 provides several definitions from previous studies. 
Document automation usually refers to the automation of complex document process and workflow 
including template development and document assembly, usually through the use of advanced 
technologies. 

  



Table 1. A selection of document automation definitions 

Study Definition of document automation  
Lauritsen 
2007 

Document automation suffers from overbreadth. It sometimes refers to complementary technologies such as 
document management, comparison, and analysis tools, and word processing features like automatic numbering 
and cross-references. And it again implies a degree of automaticity that doesn’t comport with the mixed initiative
nature of present day and emerging drafting technologies. 
 

Colineau 
et al. 2013 

There are commercial document automation systems (e.g., HotDocs, Exari, and Arbortext) which have been used 
in the legal profession to automate the production of custom-built legal documents (e.g., deeds of sale, 
standardized agreements, etc) and in the technical documentation field to produce model-specific product 
documentation. These tools provide mail-merge-like features extended with conditional inclusion/exclusion of 
coarse-grained text units generally on the order of sections, paragraphs or perhaps sentences.  
 
DA systems provide tools for two tasks: 
- Template construction – In this task, trained authors construct reusable templates, often from existing 

documents. 
- Document assembly – In this task, an application uses an interview system to collect relevant characteristics 

from the user and then automatically constructs a personalized document for that user based on an 
appropriate template. 

 
Dale 2018 Document automation in the legal sector means generating routine legal documents. Document automation 

systems typically use some kind of fill-in-the-blanks templating mechanism that enables the creation of a legal 
document tailored to specific criteria. In some cases, the data required to generate the document is obtained via an 
iterative question-and-answer dialog.  
 

Glaser et 
al.  2020 

The term Document Automation describes the trend of applying software solutions to automate the generation of 
documents. This study focuses at document generation as a sub-process of document automation. In most cases 
legal documents are highly structured and the decision which paragraphs are included depends on strict rules that 
have been defined in advance. The underlying logic for the document structure is usually modified only when the 
law or regulations change. For this reason there is a high potential to use document automation in the legal 
domain.  

2.2 DOCUMENT FORMATS AND STANDARDS
Digital documents can be represented, stored and exchanged in a variety of formats defined by 
standardization organizations such as W3C2 and OASIS3 (Hackos 2016). DA systems usually support
standard formats such as PDF, TeX (Latex), DOCX, HTML, and IPYNB when converting documents 
from one format to another and generating final documents. DA systems may also utilize standard data-
exchange formats such as XML (Extensible Markup Language) and JSON (JavaScript Object Notation) 
to represent documents in a way which is more machine-readable and more convenient for automated 
processes.  

XML is a standard for defining markup languages with a set of start and end ‘tags’ which can be used to
add more information about the main textual content, such as the mode of presentation or semantic 
information. The structure and allowable elements of an XML document can be defined in an XML DTD4 
file. XML structures can be mapped into HTML, plain text, or other XML structures using an Extensible 
Style Sheet Transformation (XSLT), which can be used to convert an XML document into other formats 
recursively. Table 2 lists selected XML-based standards highlighted in the reviewed studies.  

The reviewed studies have also employed XML-based Semantic Web standards (Hitzler 2021), including 
the following W3C standards: 

- RDF (Resource Description Framework) is a simple triple-based data model (triple of subject, 
predicate, object). RDF provides a graph-based formalism for representing metadata. 

                                                      
2 W3C: World Wide Web Consortium 
3 OASIS: Organization for the Advancement of Structured Information Standards 
4 DTD: Document Type Definition 



- OWL (Web Ontology Language) is a de-facto standard for ontology development. It provides a rich 
vocabulary to add semantics and context and allow reasoning and inference.  

- SPARQL is an RDF query language able to retrieve and manipulate data stored in RDF. 
 

Table 2. Overview XML-based document standards 

Standard Description Developed by Extended from 
OOXML Office Open XML is a zipped, XML-based file format developed by 

Microsoft for representing word processing documents (docx), 
spreadsheets (xslx), charts, presentations and. The format was 
initially standardized by Ecma, and by the ISO and IEC in later 
versions. (Wikipedia) 
 

Microsoft, ECMA, 
ISO/IEC 
 
Standard: ECMA-
376, ISO/IEC 29500 

XML, DOC, 
WordProcessingML 

DITA The Darwin Information Typing Architecture specification defines a set 
of document types for authoring and organizing topic-oriented 
information, as well as a set of mechanisms for combining, extending, 
and constraining document types. 

OASIS XML, HTML 

DocBook DocBook is a semantic markup language for technical documentation. 
It was originally intended for writing technical documents related to 
computer hardware and software, but it can be used for any other sort 
of documentation. 

OASIS 
 

XML 

ODF The Open Document Format (ODF), also known as OpenDocument, 
is an XML-based open source file format for saving and exchanging 
text, spreadsheets, charts, and presentations. The ZIP-compressed 
XML files saved under ODF, termed "OpenDocuments," have easily 
recognizable extensions, similar to Microsoft's proprietary .doc or .xls. 

OASIS 
 
Standard: ISO/IEC 
26300; (OASIS 
OpenDocument 
Format) 

XML 

 

3 DA ARCHITECTURES AND TECHNOLOGIES

3.1 REFERENCE ARCHITECTURE FORDA
In order to better understand the various DA architectures reviewed in the following sections, first we 
introduce a reference architecture in this section to present a common vocabulary for DA components and 
their relationships. Using this common vocabulary, it will be easier to identify and discuss what 
components and aspects are supported or excluded in a specific DA architecture reviewed in the current 
survey. Our proposed reference architecture is depicted in Figure 1.  

Document design: A fundamental characteristic of DA architectures is the schema of the document to be 
automated, and the associated ontology (if any). The schema defines how the document structure should 
be and what ‘tags’ it can carry. Ontology gives a meaning to the tags and defines relationships between 
them. These both comprise of what is shown in the diagram as ‘document design’.  

Template: The templates used for document automation are built on top of the document schema. 
Templates encode any static information to be added to all the documents, and have placeholders for the
variable content which can be filled by the users or from external data repositories. Templates are not 
exhaustive in specifying the default content of the document, as it is often done by the ‘document
conversion’ part of the architecture. 

External data sources refers to any data source, such as a database, set of rules or semantic data such as 
RDF triplets which is used as a part of the document automation workflow.  

Content processing defines a layer or a wrapper over that data to process it, either to assimilate it into the 
pipeline or to generate inferences. Most architectures fill the template with the data acquired from 



external sources before presenting the draft document to the user, although there are several which present
a form to the user based on the template and the external data to modify the end document in certain 
ways.  

Document assembly: Finally when the user(s) provide input, ‘document assembly’ takes place where the
different fragments of documents are assembled based on the configuration defined. The assembly could 
also involve data directly from external data sources.  

 

Figure 1. Proposed Reference Architecture for Document Automation  

Document processing: After the ‘document assembly’ phase, the document is processed in the ‘document
processing’ stage where citations, references, generating code outputs can be handled. Finally the
document is sent to the ‘document conversion’ stage, where the draft is converted to the desired document
output format.  

Document analysis: In the ‘document analysis’ setting, the ‘document parser’ uses the defined document
ontology to parse the input document into RDF triplets or some other convenient format. These triplets 
can be further processed to store in a repository or act on the data.  

Storage/version control and authentication can be implemented as desired.  



Human input in the analysis phase can happen either directly on the input document (if it is editable) or
on the information extracted after parsing the document. 

3.2 LEGAL DAARCHITECTURES
In this section, we will review DA architectures aimed at document generation approaches used for 
creating legal documents. 

3.2.1 Legal DA features
In this section, we will summarize legal DA features. Reviewing the history of legal DA evolution, 
Lauritsen (2012) identifies three main branches for legal DA:   

Document creation: Technologies that assist with the creation of documents. There are two main areas of 
interest in document creation: (a) Document authoring (Power drafting), which includes word processing 
tools and a variety of other kinds of power tools that people can use to create documents. (b) Document 
assembly (auto assembly), including semi-autonomous document generation tools, e.g. HotDocs. 

Document analysis: Technologies that assist in analyzing existing documents in various ways. There are 
three main areas of interest in document analysis: (a) Disassembly, which involves taking a document or a 
whole repository of documents and deconstructing it into its constituent parts for the sake of analysis and 
consequently for the purpose of guiding future document creation. (b) Validation, which includes a form 
of analysis which takes an existing document and validates it against some standard or some other 
document. (c) Meaning extraction, which goes beyond mere structural disassembly or deconstruction of a 
document and instead it takes a document that exists and parses it to extract and inference meaning out of 
it for the following purposes: What is the propositional content of the document? What rights and 
obligations are being expressed by the words? What are the parties agreeing to? What normative content 
is contained in the document?  

Document management: this means managing documents once they already exist: (a) Content storage 
and retrieval, which includes managing the content itself, storing it, retrieving it, and allowing people to 
search. (b) Rights and obligations, which is related to managing the rights and obligations that are 
contained in legal documents (also called contract management software). How do we deal with them? 
How do we keep track of them and find them? Henley (2020) describes 16 criteria when evaluating legal 
DA platforms as shown in Table 3.  

Table 3. Overview of legal DA core and supporting features and evaluation criteria  

Criteria for evaluation of legal DA platforms  
Henley (2020)   

Legal DA core and supporting 
features (Glaser et al. 2020) 

- Dynamic questionnaire* 

- Capture and reuse inputs 
- Ability to pull information from databases 
- Ability to add help text in the questionnaire 
- Ability to generate multiple documents from one questionnaire 
- Questionnaire flexibility 
- Ability to calculate results 
- Ability to handle conditional logic 
- Ability to gather and process lists/repeats 
- Ability to complete PDF forms 
- Ability to handle inserted templates 
- Familiarity with template development environment 
- Cloud or desktop 
- Ability to gather data from others 
- Stability of the vendor 
- Technical support and training 

(a) Legal DA Core Features: 
- Template Structure  
- Template Creation  
- Document Generation  
- Conditional Logic  
- Formulas  
- Documentation  
- Usability  
(b) Legal DA Supporting Features: 
- Integration 
- Document Management 
- User Management 
- Collaboration 
- Enterprise Scalability 
- Advanced Authentication 
- Data Ownership 

* Questionnaire here refers to any data input screen or interview involved in the assembly process. 



Glaser et al. (2020), which evaluated 13 commercial legal DA tools, has specified two categories of legal
DA features (Table 3): Core DA features are essential parts of the template creation process or document 
automation process. DA supporting features extend the core functionality of document automation tools 
and relate to the tool’s integration into the existing landscape from a technical and an organizational point
of view. More details about these core and supporting features can be found in Glaser et al. (2020).  

Glaser et al. (2020), in their evaluation of 13 DA tools, identify two major ways that tool vendors have 
implemented templates: (The preference for one type or the other depends on the requirements in the 
individual case of organizations) 

 The first approach uses Add-Ins for Microsoft Word to annotate existing DOCX files with custom 
tags that are used as placeholders or to mark the beginning and end of conditional text blocks. This 
approach relies on users’ familiarity with Microsoft Word and delegates large parts of the template
creation like formatting to the Word editor.  

 The second approach is to utilize a custom editor that is built from scratch or templates that enforce a 
high degree of structure. This makes it easier to create templates that adhere to a strict structure but 
can also limit the number of structures and styles that can be modeled in the template. Templates are 
modularized to a varying degree with a higher modularization leading to more reusability between 
templates.  

A leading commercial legal DA tool: Hotdocs, which appears in top Google Trends’ queries related to
DA, allows users to turn regularly used documents and forms into intelligent templates that guide the 
document creator through an interview, resulting in the production of an accurate, formatted document.  

 

Figure 2. An example legal DA workflow (HotDocs 2021) 

HotDocs Hub5 is a modular suite of commonly-needed components for HotDocs integrations. 
Applications that integrate with HotDocs typically provide several additional features for controlling how 
HotDocs resources are used, such as HotDocs template storage, user authentication and authorization, and 
HotDocs interview generation. The Hub supplies these components without any additional development 
effort on the user’s part.  

3.2.2 Legal XML architectures (Akoma Ntoso)
Palmirani & Vitali (2011) define the pillars of the Akoma Ntoso architecture and also present basic 
elements of Akoma Ntoso XML standard. This standard can be used for marking up a legal document 

                                                      
5 https://help.hotdocs.com/hotdocshub/onpremise/earlier/1.5.0/help/admin/Understanding_the_HotDocs_Hub.htm  



respecting a clear subdivision between the semantic layers of the knowledge embedded in it. Palmirani &
Vitali (2011) define the following steps for legal analysis of the document: 

 Identify the type of document 
 Distinguish content from metadata and the presentation layer  
 Identify the document’s main legal components 
 Define the document’s URI 
 Isolate each main legal block in the document 
 Identify side notes by the author or issuing authority 
 Detect and mark up the text’s semantic elements 

Marković & Gostojić (2020) produce legal documents in Akoma Ntoso format assembled using user-
input and a set of legal rules. Palmirani and Governatori (2018) use Akoma Ntoso for marking up legal 
text, which then along with legal concepts and rules are used to check GDPR compliance for public sector 
cloud computing services. 

 

Figure 3. Layers of representation in the Akoma Ntoso legal architecture (Palmirani & Vitali 2011) 

3.3 DITA: DARWIN INFORMATIONTYPINGARCHITECTURE
DITA is an XML-based architecture for creating documents based on maximum content re-use, multi-
modal output and standardization. XML-based architectures promised three major enhancements for 
documentation pipelines (Priestley et al. 2001): (1) separation of form from content, (2) custom markup 
for organization-specific forms or features, and (3) a standard interface for creating and publishing 
documents using open-source tools. But often these claims are difficult to realize due to various reasons. 
For instance, the separation of form from content makes sure that the content once written can be 
published in various formats. But often, the content is structured according to a particular output form, 
and there is no guaranty that it will appear as expected in the other outputs too. The other two claimed 
advantages of using XML as a technology for documentation pipelines are in contrast to each other and 
result in tradeoffs. Essentially DITA considers these three advantages of using XML and seeks to fix 
them using certain principles so that they can be actually realized without any tradeoffs.  

First, DITA advocates that the document authors forgo the conventional form of writing content 
structured as a book and instead write it in small chunks of information called ‘topics’. The size of each
topic could encompass a few paragraphs, but not as big as to cover a whole chapter in a book. Further, 
there could be three types of topics- ‘tasks’, ‘concepts’ or ‘references’. For example a book could be
published as a sequence of topics written by the author, while a slide presentation might choose only few 
of the essential topics for brevity. Expressing information as such topics creates a knowledge graph which 
allows the users multiple entry and exit points depending upon their interest in particular topic or the 
mode of presentation of the information. 

Text 
Structure 

Legal Rules 

Legal Ontology 

Legal Metadata 



Second, to optimize the creation of custom markup, DITA recommends a principle called ‘specialization’,
which is similar to the ‘inheritance’ principle popular in object-oriented programming. This implies that 
all custom markup-up should inherit the basic markup from a parent and only define the changes in it. 
Creating a markup for a document essentially means creating a document definition that is a DTD 
(Document Type Definition) that will be followed by the authors while writing the content. This allows 
changes in the parent to be automatically replicated to all the child DTDs, which is often known as reuse 
by reference. To avoid the loss of standardization, the architecture limits you to redefine the markups 
already present in the parent DTD and not create an entirely new way of presenting information, as that 
would have no fallback for when shared outside the organization. 

Third, to enhance the process followed for creation of end-documents from the XML-typed ones, DITA 
recommendations ‘specialization-aware transforms’ which advocates principles along similar lines of
specialization. The stylesheets generalize to the most specific DTD it can transform in the hierarchy- so 
that organizations can render their content in a custom format by creating a specific transformation which 
inherits a general one.  

Another architectural feature designed to make the process easier is that the DTDs and XSLTs are defined 
for each topic rather than the whole document. This allows us to break the process into components for 
re-use. DITA claims following these principles will not only ensure re-use of content and 
interchangeability, but also ensure the efficiency in creating custom markup and stylesheet transforms. 

An application of DITA was presented by Eito-Brun (2020) where it was used to bring efficiency into 
software documentation in the Aerospace industry. DITA allowed efficient integration of information 
from various sources and single-source generation of HTML/PDF/Word documents. Data from various 
sources was collected and converted into XML using XSLT. XML files were then assembled and more 
content could be added using an XML editor. Final documents were generated using an XSLT stylesheet.  

3.4 DPL:DOCUMENT PRODUCT LINE FOR VARIABLE CONTENT DOCUMENT GENERATION
Gomez et al. (2014) introduce DPLFW, a framework and tool supporting the Document Product Line (DPL) 
methodology for multi-user, variable content and reuse-based document generation. The goal is to provide 
a document generation alternative in which variants are specified at a high level of abstraction and content 
reuse can be maximized in high variability scenarios.  

A DPL process starts with the development of a document feature model that defines the characteristics of 
a family of documents and the contributors involved (actors). This stage of the process called ‘Document
Engineering’ entails a feature model defining content features and technology features as characteristics 
of the family of documents. Every content feature is linked to an 'info element' which is a reusable piece 
of content and eventually becomes a part of the document. Finally a document product line is set up 
which specifies how the info elements are integrated. Next in the 'Application Engineering' stage, the 
variability points are selected and the document product line is used to generate a document composed of 
the info elements. A specific document (an instance of the family) is created following a process in which
the document components are taken from a repository, maximizing reuse. Penadés et al. (2014) defined a 
family of tax forms in DPL to customize the form according to the variability points selected by the user.  

Figure 4 shows a proposed mapping of a general architecture for document product lines onto the 
reference DA architecture presented in Figure 1. The dotted lines and boxes in this particular architecture 
indicate that corresponding components (which are part of the reference DA architecture) are not 
explicitly present in the document product lines.  



 

Figure 4. Architecture for DPL (document product lines) – mapped to the reference DA architecture  

3.5 MODEL-BASED DOCUMENT GENERATION FOR SYSTEMS ENGINEERING
Delp et al. (2013) develop a workflow to generate documents from system models in NASA’s model-
based systems engineering projects which utilize the SysML modeling language. The workflow extends 
the SysML concepts of View and Viewpoint6 in order to generate documents customized to the needs of 
the intended audience. The primary use case is to use the output of the viewpoint in DocBook to generate 
an HTML or PDF file according to the transformation applied. Delp et al. note that the technique can be 
used to integrate with existing or new analysis tools by adjusting the View format as an interface that can 
transmit subsets of model data back and forth with applications like Excel, Mathematica, Matlab, and 
more. This could further increase the collaboration between various teams.  

Another example of a document automation solution built of top of MBSE setup in the Rubin observatory 
was given by Comoretto et al. (2020). A model based systems engineering (MBSE) approach is followed 
where the verification elements are defined in MagicDraw with the requirements as a starting point. All 
the test execution results are reported to Jira which are then propagated back to the verification elements 
and requirements. A tool called ‘Docsteady’ was developed to generate LaTeX test documents by
extracting information from Jira using an REST API. Whenever changes are pushed to the document 
repository by the author, a CI service can be engaged to automatically render a PDF document and store it 
in ‘LSST the Docs’, a platform for hosting version controlled documents. The implemented
documentation workflow presents three major advantages- reduced in time to produce V&V documents, 
better integration with the project’s system engineering model and full traceability of system
requirements. 

Michot et al. (2018) proposed an architecture to keep traceability intact for bidirectional information 
transfer between document and the model. Development of APIs along with a tagging mechanism is used 
to synchronize corresponding elements between the model and the document.  

In addition, there are other studies on model-to-document generation, such as Chammard et al. (2020).  
Figure 5 shows a proposed mapping of a general architecture for model-based document generation onto 
the reference DA architecture presented in Figure 1. The dotted lines and boxes in this particular 

                                                      
6 SysML offers two constructs for models: “Viewpoint” refers to the specification which a stakeholder provides for
model elements and aspects that they are interested in. “Views” are how the stakeholders see the model according to
the viewpoint specified. 



architecture indicate that corresponding components (which are part of the reference DA architecture) are
not explicitly present in the model-based document generation workflows.  

 

Figure 5. Architecture for model-based systems engineering documentation workflows – mapped to the reference DA 
architecture  

3.6 KNOWLEDGE-BASED AND SEMANTICWEB ARCHITECTURES
One category of DA architectures utilize knowledge repositories and reasoning mechanisms to derive 
inferences from a set of rules. The set of rules can be used together with user input, where users can make 
choices among the options presented to them. Such choices can impact the overall document assembly 
process. The inferences derived from the rules can have implications on how the document is assembled 
or what text is to be added to the document.  

Marković & Gostojić (2020) propose a method for knowledge-based document assembly. They 
demonstrate this method by implementing a proof of concept with service contracts as a sample document 
type. Compared to other knowledge-based approaches, the method proposed by Marković & Gostojić
(2020) uses an explicit formulation of legal norms prescribing the content and the form of service 
contracts to facilitate the document assembly process. The document assembly process includes two 
phases of analysis and synthesis. In the analysis phase, the legal professional and knowledge engineer 
formally represent a legal rule base and legal document templates to transform them into interview 
questions semi-automatically. The configuration of the document assembly process is also established in 



the analysis phase. The stated knowledge is represented as a set of rules in the LegalRuleML7 format
because of its relevance for the legal domain. The collected tacit knowledge is represented through 
ToXgene document templates that produce documents in the Akoma Ntoso format. The ToXgene format 
(Barbosa et al. 2002) is selected because it generates XML documents using a syntax similar to the 
industry-standard XML Schema. Akoma Ntoso is chosen for its flexibility in supporting multiple 
document types from a variety of legal systems.  In the synthesis phase, the user answers the developed 
questions, and the system generates legal documents using the knowledge base and assembly 
configuration prepared from the analysis phase for the specific case. The system also generates an 
argument graph that explains how the document elements are derived from the legal rules and facts (as 
shown in Figure 6). The user answers needed by inference engine are stored in the RDF triples format, 
and those needed by the template engine are stored in a custom XML format as name-value pairs. 

 

Figure 6. The flow of knowledge-based document assembly process (Marković & Gostojić 2020) 

Ontologies find their place in document automation especially as enablers of enterprise-wide document 
semantic interoperability. Semantic interoperability is the process of representing, editing, and 
transmitting semantic information in one context, and then receiving and interpreting it in another. 
Several document ontologies have been proposed in the literature, such as DoCO by Constantin et al. 
(2016). DoCO is a document ontology model consisting of structural (container, block, inline etc.), 
rhetoric (caption, reference etc.), and hybrid (sentence, footnote, paragraph etc.) classes.  

Yang et al. (2020) proposed a cross-context tabular document representation approach, called 
Tabdoc, to represent heterogeneous semantic documents across domains in a consistent and interoperable 
way. This approach aims to address existing limitations in the research methods of semantic 
interoperability, including standardization, ontology modeling, and collaboration templates.  Yang et al. 
(2020) implement the proposed method under Sign Description Framework (SDF) and develop a new 
editor for semantic document creation. The Tabdoc framework ensures semantic interoperability by 
deconstructing the problem of representing semantic documents into three levels: vocabulary, relationship 
and document level.  

One such application of ontology was given by Mirza & Sah (2017), where they developed a system to 
automatically check the format and structure of ACM SIG documents. The new Word format uses 
OOXML as the document standard, where the relevant metadata from document.xml and styles.xml is 
identified and converted into RDF (N3) triplets using an ontology developed for the conference 
documents. The ontology consists of 9 classes, 7 object properties and 67 data-type properties. The RDF 

                                                      
7 LegalRuleML is an OASIS standard which defines a rule interchange language for the legal modeling and 
reasoning: https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=legalruleml (Accessed 15.5.2021) 



triplets consist of an index for document ID and part as the subject, the part feature extracted from the
OOXML metadata as the predicate and the actual value extracted as the object. Once the RDF triplets are 
obtained, they are analyzed for developed rules using Jena reasoner- where additional triplets are added 
for the results of the validation by Jena. The number of rules was set according to the time it takes to 
execute them versus the validation requirements. Finally SPARQL is used to query these newly 
developed RDF result triplets and an XML document is generated. The authors validated the usefulness of 
the tool with a user study and noted that the format checking can take about 10 seconds, which is a 
considerable efficiency gain when compared to manual process. 

Ontologies have also found application in integrating data models and information with document 
automation pipelines.  

One such use case is for personalization of documents where Colineau et al. (2013) present a public 
administration information delivery system in Australia’s Department of Human Services (DHS) that
produces websites that are tailored to individual users. This system, called DHS-Myriad, includes a 
knowledge base with reasoning capabilities, a document planner and an authoring tool. The architecture 
consists of 4 major components- a query tool, document planner, context model and an authoring tool. 
The context model encodes the semantic information involved in the communication- the concepts and 
individuals from the domain (intended content), user, and possibly the discourse history and computation 
device. First a query form is presented to the user where the questions are created from the context model 
using an ontology verbalizer called the Semantic Web Authoring Tool (SWAT), developed by Third et al. 
(2011). The document planner creates a discourse tree structured with rhetorical relations using a text 
planner and declarative plan operators. Based on the choices made by the user in the query form, a 
tailored text is generated using the document planner. Finally an authoring tool is created to aid technical 
writers not comfortable with creating ontologies. The output of the system is a dynamic website tailored 
for a particular user. Referring to the system’s usability test results, the authors note that the output of the
tailored delivery system has been understandable and useful to users.  

Another more direct use of ontologies for integration with data sources is provided by Pikus et al. (2019), 
where they develop a semi-automatic end-to-end documentation system, able to generate documents 
based on structured data represented in RDF format. The system extracts distributed lifecycle data, for 
storing it in a concise semantic manner and for providing relevant information in topic-centric and 
variant-specific documents. As a use case for document generation, they employ the RDF-based lifecycle 
tool integration standard OSLC (Open Services for Lifecycle Collaboration), add extended publishing 
information and leverage DITA in order to generate target documents. In particular, Pikus et al. 2019 
extend OSLC domain ontologies (RDF) with documentation-relevant triples and propose additional DITA 
elements for referencing RDF data. Only a subset of RDF objects are relevant for documentation – called 
PIOs (Publication Information Object). PIOs are referenced in DITA templates being bound to particular 
RDF classes. Finally, they formalize a PIO Management Environment (called PIOME) and propose a 
DITA template processing algorithm.  

Figure 5Figure 7 shows a proposed mapping of a general architecture for knowledge-based and semantic 
document generation onto the reference DA architecture presented in Figure 1. The dotted lines and boxes 
in this particular architecture indicate that corresponding components (which are part of the reference DA 
architecture) are not explicitly present in knowledge-based and semantic document generation.  



 

Figure 7. Architecture for knowledge-based and semantic document generation – mapped to the reference DA architecture 

3.7 ARDEN SYNTAX FOR CLINICAL DOCUMENTS
Arden syntax is a domain-specific programming language designed to meet the requirements of clinical 
event-monitoring in the form of Medical Logic Modules (MLM). An MLM is a production rule with a 
frame-like structure made of categories and slots, used to make a single clinical decision. Arden syntax 
and the accompanying MLMs were designed for the identification and notification of clinical events. 
(Hripcsak 1994).  

A number of studies have utilized and extended the Arden syntax to generate clinical reports. Kraus et al. 
(2016) create an intensive care discharge letter system by extending the current Arden syntax to include 
‘interface calls’ for easy creation of templates. The Arden syntax can interact with the local patient data
management system (PDMS) to fetch patient information from the electronic medical records. This 
information is used to fill in the template while generating a report. The extensions also allows 
intensivists to add more detail into their discharge reports such as outliers in sensor data and the presence 
of specific microorganisms, as shown in an example in the paper. 

Arden syntax, which was originally created for clinical support decision systems, lacks necessary features 
needed for clinical document generation.  For example, there was a need by intensivists to generate more 
sophisticated reports than what they could do via legacy simple templates. Kraus (2018) and Kraus et al. 



(2019) extended Arden syntax to create a more general language suitable for all clinical applications
called PLAIN (Programming Language, Arden-Inspired).  They also created a PLAIN data markup 
language (PDML) as a convenient representation of the electronic medical records data and demonstrated 
the PLAIN and PDML in a report generation example. The advantages of PLAIN include:  

 PLAIN provides a standard language to be used in the medical domain. 
 It helps treat MLMs as user-defined functions (UDFs), and provides native support for RESTful 

web services (Fielding 2000). 
 It introduces string interpolation, making it more convenient to create document templates over 

the existing methods of string manipulation in the Arden syntax.  
 Future development of this extension would involve natural language generation for texts of very 

large size and offer more flexibility in sentence creation. 

The Arden syntax is not based on XML, but it can be modeled in XML. For example, see Kim et al. 2008.   

3.8 QUANTITATIVE ANALYSIS REPORTS
In this section, we will review DA architectures aimed at document generation approaches used for 
quantitative analysis reports, which are common in scientific studies and financial model risk 
management processes. This approach emphasizes the reproducibility of the analysis presented in the 
report, along with helping the author to weave the text with the code so that the analysis becomes 
presentable. Such architectures are expected to support the following features:  

 Authoring tool to write text; add tables, figures and mathematical equations; and cross reference  
 Ability to connect to databases to automatically add model meta-data and model dependency 

information 
 Ability to add code snippets whose outputs need to be directly integrated into the document 

(literate programming) 
 Ability to publish in PDF, Docx and HTML 
 Collaboration features for commenting and track changes 
 Version control and reproducibility  

Such documentation approaches are usually created on top of the analysis tool or programming language 
that is primarily used by analyst document authors. For example, Lang (2001) present a way to embed a 
statistical programming language (called S) into an XSLT translator so that an XML document containing 
the code in that language can be converted into an interactive HTML document along with the code 
output. Following that Leisch (2002) presented a new report generation method called Sweave which 
permitted weaving statistical programming languages (S/R) into Latex so that the documentation for data 
analysis can be carried out seamlessly. Sweave automatically generated a complete Latex document by 
evaluating the statistical programming code (in S/R), and also generating a code preview for it, keeping 
the rest of the Latex code as it is. Another such software is Codebraid (Poore 2019) which executes code 
blocks and inline code in Pandoc Markdown documents (MacFarlane 2012) as part of the document build 
process. A single document can involve multiple programming languages, as well as multiple 
independent processes per language, including Jupyter kernels. Since Codebraid only uses standard 
Pandoc Markdown syntax, Pandoc handles all Markdown parsing and format conversions. There is also 
support for programmatically copying code or output to other parts of a document. Kane (2020) refers to 
literate programming as having both narrative and computational components, which is important to 
express the findings and research to a wider audience and also to provide more credibility to your work. 
To this end, they discuss an R package called ‘listdown’ which automatically creates R Markdown



documents from a named list which contains data-structures including tables and graphs to be presented
in hierarchical order.  

3.8.1 Notebook-centric document automation
Architectures and technologies based on Jupyter notebooks are commonly utilized in scientific and 
quantitative analysis documentation workflows. Jupyter notebooks provide an interactive web application 
allowing users to create and share programmatic analysis in over 40 languages and provides features to 
add data commentary in the same environment (Kluyver et al. 2016; Pérez & Granger 2007). Jupyter 
notebooks contain live code, equations, visualizations, and text. A notebook supports a variety of 
quantitative analysis requirements, including data cleaning and transformation, statistical modeling, data 
visualization and documentation. Each notebook consists of several cells. Users can change the cell type 
of any cell in a notebook using the toolbar. The default cell type is Code. Users can write and execute 
analysis code in code cells and see the interactive output (including tables, plots, equations, etc.) below 
each cell. This interactive experience enhances usability and resembles the step-by-step nature of 
analysis. Users can also change a cell type to Markdown in which they can write text which can be 
formatted using the Markdown language.  

Technically, a Jupyter notebook file (IPYNB) is a document format built on top of JSON. Each notebook 
communicates with a kernel process – which executes code – using a protocol called Interactive 
Computing Protocol. 

Given the capabilities of Jupyter notebooks to support analysis and documentation in a single file, they 
can serve as standalone documents for scientific and quantitative analysis documentation to share data 
preparation procedures, analysis code, visual/tabular results and discussion in a single file. For example, 
BioJupies (Torre et al. 2018) is an online tool which creates Jupyter notebooks complete with narrative 
text, interactive visualizations and analysis for RNA sequence data. The tool can be used by novice users 
who input a raw data file (FASTQ), which is processed and a Jupyter notebook is created with the 
required analysis, along with storage and deployment options. Ragan-Kelly et al. (2013) show how 
notebooks were hosted on cloud to enable collaborative and interactive research on compute-intensive 
subjects such as genomics.  

The open-source ecosystem has driven the development of numerous resources for notebook management 
and sharing, which make Jupyter Notebook a powerful analysis documentation tool. JupyterHub, for 
instance, facilitates centralized deployment and authentication for coordinated use of notebooks by a 
group of analysts (Kluyver et al. 2016). For storage and viewing, Nbviewer8 facilitates sharing of 
notebooks in a read-only mode, while Binder9 turns a GitHub repository of notebooks into a collection of 
interactive notebooks. Kluyver et al. (2016) discuss how for a scientific paper on detection of 
gravitational waves, a notebook was utilized to filter and process data and was made accessible to the 
public using Binder. From a computational perspective, Jupyter notebooks offer benefits to end-users as 
notebooks communicate with the kernel through a network protocol, implying that the compute power 
could be centrally managed for all end-users (Perkel 2018). Juneau et al. (2021) use a Jupyter-based 
architecture to conduct analysis in the Astro Data lab of NSF’s National Optical-Infrared Astronomy 
Research Laboratory (NOIRLab). Typically in such a workflow, after user authentication, external data is 
queried and retrieved directly in the notebook, post which the analysis is carried out. Henderson et al. 
(2019) develop a system to avail high performance computing to end-users of high volume experimental 
science laboratories through Jupyter Notebooks. They propose an architecture based on JupyterHub 

                                                      
8 https://github.com/jupyter/nbviewer  
9 https://mybinder.org/  



service for utilizing HPC resources at the National Energy Research Scientific Computing Center
(NERSC). Interfacing between Jupyter processes and compute nodes also allow for distributed computing 
using IPyParallel or Dask. Beg et al. (2021) attribute the effectiveness of Jupyter for reproducible 
research in computational sciences and mathematics to easily shareable nature, consolidation of code and 
narration and being able to execute them as a ‘batch job’ among other reasons. They also emphasize on 
the ease of creating documentation through Jupyter Notebooks with Sphinx10, which creates an HTML 
file or PDF as a result. Beg et al. discuss a workflow for reproducible research based on Jupyter 
Notebooks, where once authored, the notebooks are stored in a repository such as GitHub, after which 
Binder is used to share that notebook with the public directly through the browser, without any additional 
installations. JupyterHub helps to manage the resources associated with Jupyter Notebook at an 
institutional level such as computation kernels along with adding a layer of authentication. Beg et al. state 
the drawbacks of Jupyter Notebooks as having an undefined cell execution order and high initial start-up 
effort and time. In an effort to understand and improve the reproducibility of Jupyter notebooks, Pimentel 
et al. (2021) design a JupyterLab extension called ‘Julynter’, which identifies potential issues and
suggests modifications to improve the reproducibility of a notebook. They attribute most reproducibility 
failures to missing dependences, hidden states, incorrect execution order, and data accessibility. 

Jupyter Notebooks have also been considered as an intermediary form of documents and can be converted 
to a more conventional document format such as PDF or HTML. Several open source contributions have 
also taken place to that end to facilitate the conversion. While nbviewer creates static webpages with 
unresponsive widgets from notebooks, Nbinteract (Lau & Hug 2018) embeds JS code in a 'run widget' 
button in place of the static widget on the webpage. This JS code essentially creates a Jupyter Kernel on 
Binder (a free JN hosting service), and renders a live widget on the webpage. The service also handles all 
future communications between the widget and the Binder kernel. NbConvert11 and IPyPublish (Sewell 
2017), as shown in Figure 8, allow users to post-process the notebooks to generate a report in HTML, 
Latex and other formats using Jinja templating. The users add the analysis and prose in Jupyter Notebook 
which has extensive support for adding tables, images, equations and performing analysis. ‘Ipywidgets’
allows embedding widgets in the notebooks through which users can interact and modify the resulting 
document. 

 

 Figure 8. IPyPublish notebook-centric architecture (Sewell 2017) 

3.8.2 Wells Fargo’s Document Generation System (DGS)
Wells Fargo’s Document Generation System (DGS) delivers document automation capabilities based on
Jupyter Notebooks to help model validators create and edit model validation documents and publish the 
final PDF report. Using the DGS, users can automate repetitive and time-consuming tasks in the model 
validation process to enhance efficiency. Figure 9 shows building blocks of the DGS. For each model 
validation project, the DGS collects relevant data from model databases and provides a model-specific 
                                                      
10 https://www.sphinx-doc.org/en/master/index.html  
11 https://nbconvert.readthedocs.io/en/latest/  

Merge & 
Pre-process  

Apply Jinja 
Templates 

Post-process 
& Conversion 

Jupyter 
Notebooks 

Final 
Output 

(e.g. PDF) 

Create Jinja 
Template 

Apply Filters 
Build Tex/HTML 

Pre-processor 
Classes 

Post-processor 
Classes 



notebook template in which users can write their validation assessment with the possibility to integrate
plots and tables from statistical analysis notebooks. In addition to common notebook extensions such as 
table of contents and spellchecker, the DGS offers custom notebook extensions (Figure 10) to provide a 
more advanced search and replace features and to enhance collaboration among multiple authors by 
tracking changes, merging documents, and adding comments. It also develops extensions to facilitate 
adding new cells tailored for adding figures, tables and equations. The main objectives and features of the 
DGS are as follows: 

1. Reproducibility and reusability: To achieve this objective, the DGS utilizes version-controlled 
Jupyter notebooks for both analysis code and verbiage; it integrates the validation report 
notebooks with analysis notebooks; the reports can be reproduced later; users can easily adapt and 
reuse documents to generate validation reports for similar projects; the DGS provides a well-
documented workflow as a starting point for new users.  

2. Efficiency improvement: To achieve this objective, the DGS decouples presentation from 
content, integrates with the model database and other metadata sources, and offers possibilities to 
integrate with upstream model development processes and documents.  

3. Quality check and standardization: To achieve this objective, the DGS offers automated 
standardization and quality checks for both content and presentation aspects of validation reports.  

The DGS also utilizes the IPyPublish library (Sewell 2017) to convert Jupyter Notebooks into Latex/PDF 
and also HTML/DOCX using Jinja templates.  

 

Figure 9. DGS building blocks  



 

Figure 10. DGS notebook extensions 

3.9 DATA-TO-TEXT NLG ARCHITECTURES
NLG can be used to generate periodic textual documents based on collected or measured data. In this 
section, we will summarize main building blocks of a standard NLG system, providing more details on 
realization approaches. We will also review several NLG architectures based on deep neural networks 
including language models. Then we will discuss the relationship between NLG and DA approaches and 
conclude with some applications of NLG for document automation 

3.9.1 NLG building blocks
The classical NLG system architecture consists of three modules, which make up most NLG pipelines 
(Reiter & Dale 2000; Gatt & Krahmer 2018): Content determination (or document planning) analyzes 
the signals in the data and determine what messages to convey in the text. This can depend on what 
messages are considered interesting and on the type of the targeted audience. Microplanning involves 
choosing the particular words, syntactic constructs, and markup annotations used to communicate the 
information encoded in the document plan. Microplanning consists of text structuring, sentence 
aggregation, lexicalization and referring expression generation. Finally we have surface realization to 
generate the final text through grammatical, statistical or template methods. 

 

Figure 11. NLG building blocks (adapted from Reiter & Dale 2000) 

3.9.2 NLG surface realization approaches
Gatt & Krahmer (2018) identify three categories of surface realization approaches: 



1. Template-based approaches, which provide a boilerplate for the fixed parts of a document with
variable slots that can be filled by data from user input and other data sources. These approaches 
are suitable when application domains are small and variation is expected to be minimal. 

2. Hand-coded grammar-based approaches, which provide general-purpose, domain-independent 
realization systems based on a grammar of the language under consideration. 

3. Statistical approaches, which acquire probabilistic grammars from large corpora, reducing the 
manual labor needed for hand-crafted grammars.   

3.9.2.1 Template-based realization
Traditional template-based realizers can generate texts efficiently. But for some applications, templates 
are not flexible enough and are difficult to reuse (Reiter 1995). There are several studies on how to make 
traditional template-based realizers more powerful.  

McRoy et al. (2003) developed a system called YAG (Yet Another Generator) based on augmented 
templates. YAG is a real-time, general purpose, template-based surface realizer that accepts 
underspecified inputs. YAG provides an expressive and declarative language for specifying templates, 
along with default template-based grammar for a core fragment of English. Each template in YAG 
consists of rules and slots, where a slot is filled with a value by the user or the application in real time, 
and the rules decide how to realize the surface representation, also supporting recursive and nested 
templates. Several rules exist such as the ‘String Rule’, which returns a pre-defined string as the result 
and the ‘If rule’, similar to the ‘if’ condition in many programming languages. YAG also provides the 
requisite speed to work with real time systems, as the generation time does not depend on the size of the 
grammar but on the complexity of the templates. Increasing the number of templates may give more 
expressive output through YAG, but also increase the execution time. 

3.9.2.2 Grammar-based realization
Hand-coded grammar-based approaches, which provide general-purpose, domain-independent realization 
systems based on a grammar of the language under consideration. The rules of grammar govern both 
morphology (which determines how words are formed) and syntax (which determines how sentences are 
formed) (Reiter & Dale 2000). Table 4 provides a short summary of key grammar-based realization 
systems.  

Table 4. A summary of grammar-based realization systems 

Realizer Description  
SimpleNLG 
(Gatt & Reiter 
2009) 

Java Library offering direct control over realization, such as over morphological operations and linearization. 
There is a clear separation between the syntactical and morphological operations, where the syntactical 
component covers the full range of English verbal forms and morphological rules are re-implemented from 
MORPHG (Minnen et al. 2001). 

RealPro 
(Lavoie & 
Rambow 1997) 

Implemented in C++ along with APIs in Java too, RealPro is based on meaning text theory (Kahane 1984). 
Meaning text theory has seven ordered levels of representation and language is modeled as a 
correspondence between meanings and sounds. RealPro converts the input ‘Deep-Syntactic Structure’ to a
surface representation.  

SURGE 
(Elhadad & 
Robin 1996)  

SURGE is implemented in the special purpose programming language FuF and it is distributed as a package 
with a FuF interpreter. SURGE is based on functional unification grammar (Kay 1984). The ‘functional unifier‘
in the interpreter uses syntactic features from the grammar to flesh out the input skeletal tree, which is then 
linearized following precedence constraints indicated in the tree.  

KPML 
(Bateman, 
1997) 

KPML is a multilingual extension of the Penman system (Mann, 1983), based on systemic functional grammar 
(Halliday and Matthiessen 2013). Input to KPML can be provided in the form of sentence plans in SPL- 
Sentence plan Language (Kasper, 1989). 

3.9.2.3 Statistical surface realization
Lattice based methods put forward by Langkilde and Knight (1998) propose a two-step solution to sentence 
generation, where the first step is to create a lattice structure of different phrasal alternatives from a semantic 



input (PENMAN-style Sentence Plan Language (SPL) (Penman, 1989), with concepts drawn from the
SENSUS ontology) to the system. Then a bigram (or trigram) model is used to select the right choice among 
the alternatives to come out with the best sentence. Each lattice structure represents all the possible 
sentences that can be created, and the sentence having the highest value for the joint probability of its words 
is chosen as the output, where the individual bigram probabilities are obtained from a corpus. All the 
possible inflections are left for the bi-gram model to filter and choose the right one. The conversion from 
AMR to word lattices happens using keyword based grammar rules, as opposed to grammar rules based on 
syntactical categories. This leaves the syntactical choice to the system and does not force the client to make 
the specifications. Langkilde (2000) further proposed an improvement to the lattice based filtering method 
by converting AMR into a forest representation, which yields huge improvement in the time-complexity of 
the algorithm without compromising the sentence quality. The forest-based filtering method has a bottom-
up dynamic programming ranking algorithm for choosing the right words, where the crucial aspect is that 
the choice of words made for a sub-tree is the only thing of relevance and other alternatives can be 
discarded, significantly reducing the search space. 

Several works followed that of Langkilde and Knight, such as from Bangalore and Rambow (2020) where 
they proposed FERGUS (Flexible Empiricist/Rationalist Generation Using Syntax). FERGUS uses a 
stochastic tree model to construct a lattice from input dependency tree, following which the best sentence 
is selected using a trigram language model. See Gatt & Krahmer (2018) for more developments in 
statistical realizers.  

NLG for generating neonatal care and weather reports 

Report generation using NLG becomes very useful in cases where the text is based on data which is 
generated periodically. Gatt et al. (2009) develop a system called BT-45 which generates patient data 
summaries spanning every 45 minutes for neonatal intensive unit care patients. Their architecture 
sketches out four blocks- signal analysis, data interpretation, document planning, and microplanning and 
realization. These blocks are supported by an ontology which captures much of the domain knowledge. 
The paper also explores creating different textual content for different stakeholders- doctors, nurses and 
parents/guardians. Another example of generating reports using NLG (using Arria NLG engine) was 
given by Sripada et al. (2014) where they generate weather reports for nearly 5000 locations for the UK 
national weather service- the Met office. The textual quality was found to be up to the mark after a two 
year assessment by a Met office expert and further user surveys. 

3.9.2.4 Neural NLG: RNN-based architectures
With recent advances in deep learning methods, they have re-gained traction for NLG applications. 
Neural networks learn dense and low-dimensional. The ability to learn such representations automatically 
makes them well-suited to capture grammatical and semantic generalizations. Recurrent neural networks 
(RNNs) such as LSTMs are used for sequential modelling, where one application was for generation of 
grammatical English sentences using character-level LSTM by Sutskever et al. (2011). They introduce 
Multiplicative RNNs for generation of text using characters, which were chosen over morphemes for the 
ease of implementation. However, models that generate text from semantic or contextual inputs usually 
are of encoder-decoder architectures or are conditioned language models. Encoder-decoder architectures 
are well-suited to solve sequence-to-sequence (SEQ2SEQ) tasks such as machine translation, and Ferreira 
et al. (2017) adapted SEQ2SEQ models for generating text from abstract meaning representations (AMR). 
They first perform de-lexicalization, compression and linearization steps to generate flat AMR which is 
then realized using either a phrase-based machine translation (using Bayes rule) or neural machine 
translation having an RNN-based encoder-decoder architecture along with attention mechanism. Dušek &



Jurcicek (2016) use a SEQ2SEQ model with a re-ranker to produce two types of outputs from dialogue
acts (Young et al., 2010).   

Gatt and Krahmer (2018) noted that deep learning approaches have become popular for natural language 
generation, and dominant for tasks such as image captioning. The promise of stochastic and deep learning 
approaches relies on whether they can be scaled to work with large volumes of heterogeneous data and be 
used to generate long texts. Another question of importance is regarding the reusability of representations 
learnt during training for NLG applications, in comparison to image based applications where the features 
are reusable for a range of tasks. 

An example of neural NLG for DA: Automated auditing with machine learning 

Sifa et al. (2019) present a method to automate manual effort in ensuring completeness of financial 
documents according to legal requirements, for the financial auditing domain. Two documents are 
considered here: a requirements document, which lists down the parts that should necessarily be present 
in the document, and the actual document. Then the task boils down to finding the relevant paragraph in 
the document for each of the listed task, which is a manual effort performed by auditors. A machine 
learning based approach has been suggested to automate this very task to create a recommendation system 
which lists down the possible paragraphs for each of the requirements. This is done by first processing 
both the requirements and contents document semantically, that is by treating financial terms separately. 
Then a document representation is chosen, including n-grams, bag of words and neural language models. 
Unsupervised and supervised ranking approaches are proposed where the potential candidate paragraphs 
are ranked according to their likeness of being associated with a requirement. The system is also tested to 
incorporate the structural dependency between requirements and paragraphs.  

3.9.2.5 Neural NLG: Pre-trained language models

Why pre-trained language models?  

Despite the success of neural models for data to text generation and NLP tasks in general, they face 
several difficulties such as lack of large-sized task-specific datasets and the high computational cost 
required to train them (Vaswani et al. 2017). The transformer architecture was proposed by Vaswani et al. 
(2017) for parallelizable sequence to sequence generation. The transformer architecture constitutes of an 
encoder and a decoder both of which contain stacked self-attention and feedforward layers. Since then, 
several language models pre-trained on large corpuses of text have been developed based on the 
transformer model. Pre-trained language models are used for specific tasks often by fine-tuning the pre-
trained models on the task-specific datasets (Devlin et al. 2018). These pre-trained language models 
produced state of the art result on several NLP tasks such as question answering, machine translation, text 
classification and abstractive summarization, as they obviate the requirement of large task-specific 
datasets, generalizing from unsupervised pre-training.  

Recent language models  

Radford et al. (2018) proposed a language model based on decoder part of the transformer architecture 
called Generative Pre-trained Transformer (GPT), where stack of multi-headed attention and feedforward 
layers produce a distribution over the output tokens. Subsequent versions of GPT (Radford et al. 2019; 
Brown et al. 2020) have grown in parameters and performance. Devlin et al. (2018) proposed BERT- 
‘Bidirectional Encoder Representations from Transformers’ which learns bidirectional context in a
sentence to predict masked spans of text using the encoder part of the transformer. BERT also predicts a 
binary value for whether the second sentence in the input follows the first or not, helping it to learn 



sentence relations. Lewis et al. (2019) assert that BERT (Devlin et al. 2018) and GPT (Radford et al.
2018) are not optimal for the task of text generation as they predict missing spans of text independently 
and cannot learn bidirectional context respectively. They propose BART- ‘Bidirectional and Auto-
Regressive Transformers’ which uses a bidirectional encoder and an auto-regressive decoder to generate 
text for tasks such as summarization and question-answering. Rather than first pre-training a model and 
then fine-tuning it separately on different tasks, Raffel et al. (2019) propose T5- ‘Text-to-Text Transfer 
Transformer’ to use the same model, along with the same loss function and hyper-parameters for all the 
tasks. Input to the T5 encodes a task-specific prefix, which allows the encoder-decoder transformer based 
model to treat all downstream tasks as text-to-text. Raffel et al. (2019) conclude that encoder-decoder 
architectures usually perform better than only-decoder architectures, and masking parts of the sentence to 
predict, worked best for pre-training.  

Language models for data-to-text NLG tasks 

For the purposes of this paper, we are concerned with converting structured input such as a graph or a 
table into text. Two relevant datasets for these tasks are ToTTo (Parikh et al. 2020) for generating text 
from highlighted cells in a table and WebNLG (Gardent et al. 2017) for generating text from RDF data. Li 
et al. (2021b) jointly train text generation from a knowledge graph using an encoder-decoder transformer 
based model and knowledge graph reconstruction using the decoder output to achieve state of the art 
result on WebNLG, followed by T5-Large (Raffel et al. 2019) in performance. Kale (2020) notes that T5 
performs better than GPT-2 (Radford et al. 2019) and BERT on text generation tasks, and achieves state 
of the art for most if not all of them, including ToTTo using T5-3B. Mager et al. (2021) fine-tune GPT-2 
to produce text from abstract meaning representation (AMR) by jointly training prediction of the text and 
reconstruction of AMR, the candidate sentences being rescored using cycle consistency on the AMR 
reconstructed. Overall, pre-trained language models have performed better than other methods for data–
to-text generation and often produce near human quality output. For a survey on text-generation using 
pre-trained language models, see Li et al. (2021a). 

3.9.3 Relationship between NLG and template-based DA
While NLG tools with linguistic knowledge (microplanning and grammar-based realization) can be 
utilized as a text generation component in DA systems, we can observe that most commercial NLG 
toolkits (similar to DA tools) utilize simpler NLG realization methods, i.e. templates to generate text.  

Reviewing the commercial state-of-the-art of NLG in 2020, Dale (2020) notes that most of commercial 
data-to-text NLG products utilize similar mechanisms, which can be referred to as “smart template”
mechanisms. For the kinds of commercial NLG applications available in 2020, much of the text in any 
given output can be predetermined and provided as boilerplate templates, with gaps to be filled 
dynamically based on per-record variations in the underlying data source. Comparing legal DA tools with 
commercial NLG tools, Dale (2020) believes that if we take a typical commercial NLG toolkit and add 
conditional inclusion of text components and maybe some kind of looping control construct, the resulting 
NLG toolkit becomes almost the same as the legal DA tools like HotDocs. Dale (2020) notes that 
linguistic knowledge and other refined ingredients of the NLG systems built in research laboratories, is 
sparse in commercial NLG tools and is generally limited to morphology for number agreement (e.g., one 
stock dropped in value vs. three stocks dropped in value). 

There is an academic debate on template-based NLG approaches versus conventional NLG approaches 
(which employ more linguistic knowledge). Reiter (1995) highlights the benefits of conventional NLG 
approaches over template-based approaches. Van Deemter et al. (2005) challenge the common perception 
that template-based approaches to the generation of language are necessarily inferior to other NLG 



approaches as regards their maintainability, linguistic strength, and quality of output. Reiter (2016)
instead of direct comparison between conventional NLG and template-based approaches, defines several 
levels of sophistication for generating text:  

 Level 1: This level is closer to template-based approaches, including simple fill-in-the-blanks 
systems, such as Mail-Merge in Microsoft Word.  

 Level 2: This level is associated with systems that employ scripts or rules to add texts, possibly 
based on some conditions such as in web templating languages (e.g. Jinja).  

 Level 3: This is where some linguistic knowledge is utilized to deal with morphology, 
morphophonology12 and orthography13, easing the effort of requiring complex templates.  

 Level 4: The next stage in sophistication progresses to writing complete sentences and paragraphs 
from representations of the meaning.  

 Level 5: The last stage is dynamically creating documents, where the narrative of the whole 
document is controlled by the system. 

4 DISCUSSION AND CONCLUSION

4.1 KEY FINDINGS
In this section, we will highlight key findings from the reviewed studies. For the purposes of this survey, 
we have looked at how various domains have modified the basic document generation workflow to suit 
their requirements and add efficiency to the process. We primarily analyzed the content authoring and 
document assembly steps. Table 5 provides a summary of the reviewed approaches in terms of applicable 
documents, common features, distinct characteristics and underlying technologies. Here are key findings: 

 One recurring theme in product technical DA architectures is the use of content standards such as 
DITA and DocBook. DITA better supports modularity and reusability of contents generated for a 
document to be reused in other documents. DITA better supports single sourcing.  

 Architectures designed to generate quantitative analysis reports include code execution capacity 
in the content authoring interface. Such architectures make an explicit attempt to facilitate 
integrated analysis and documentation.  

 Model-based systems engineering approaches generate reports from pre-designed ‘model views’,
putting the spotlight for content authoring on automatic extraction from a central model data 
repository.  

 As for document assembly, the Document Product Line architecture allows variability selection
and assembles the relevant fragments of the document. Document assembly systems based on a 
rule base and user responses to a questionnaire have also been developed.  

 Another key finding is the availability of a variety of standards to represent different document 
layers including content, structure, layout, formatting and metadata (for example, see the layers 
defined in the Akoma Ntoso XML standard). The choice of document representation standard is 
notable when we design a DA system considering the requirements of desirable operations we 
want to apply on documents. The DA system architects should choose representation standards 
that better supports reusability, interoperability, performance, as well as operations such as 
automated auditing, reasoning over content and quality checks. 

                                                      
12 Morphophonology: The study of the phonological representation of morphemes. (Oxford Dictionary) 
13 Orthography: The study of spelling and how letters combine to represent sounds and form words. (ibid.) 



Table 5. Summary and comparison of DA architectures reviewed 

DA approach Document variety Common features Distinct 
characteristics  

Technologies 
used 

Related 
studies  

Quantitative 
analysis 
reports 

Statistical analysis 
and scientific 
reports 

Integrating and presenting 
analysis code, code output 
and natural language
explanation  

Reproducibility, 
usability 

Jupyter 
Notebooks, 
Integration of R/S 
into other markup 
languages. 

53, 63, 94, 
112, 99, 43, 
37, 5, 105 

Legal 
document 
assembly tools 

Legal documents, 
contracts, etc. 

Dynamic questionnaire; 
Capture and reuse inputs; 
Ability to pull info from 
databases; Questionnaire 
flexibility; Ability to calculate 
results; Ability to handle 
conditional logic; Ability to 
complete PDF forms; Ability to 
handle inserted templates 

Power drafting, 
template 
creation and 
maintainability   

Commercial tools: 
Hotdocs, Contract 
Express, etc. 

30, 38, 59, 
86, 71, 85 

Technical 
documentation  

Software/product 
lifecycle 
documents 

1. Documents in regulated 
software industry to explain 
development and V&V 
activities: architecture, 
functionality, and quality 
attributes. 2. User guides on 
how the product works. 

Traceability, 
automatic code 
documentation 

DITA, 
Programming 
languages 

20 

Model driven 
engineering 

V&V activities: 
requirements, plan 
and design, test 
cases, publish 
results 

Integrating document 
generation with modeling 
platform/tool. 

Traceability SysML, XML, 
DocBook, Latex 

14, 9, 75, 7 

Clinical
applications of 
Arden syntax 

Documents in daily 
clinical use such as 
Discharge letters. 

Integration with patient data 
management systems, 
templating language should 
easily integrate with medical 
domain knowledge 

Usability, 
domain-based, 
easy to learn. 

Arden syntax 50, 51, 52 

Public 
administration 

Documents meant 
to serve a 
instructions or 
rules to a large 
public. 

Document assembly is often 
the focus of such 
architectures. 

Tailored content, 
variability driven, 
personalization 

Custom software 73, 8, 88 

Data-to-text Reports based on 
machine collected 
and processed 
data. 

No manual authoring. NLG 
may be involved to convert 
data to text. 

Informative, 
periodic, natural 
language 
generation 

NLG 28, 106, 29, 
107 

Highly 
configurable 
products 

Manuals for each 
configuration of the 
product. 

Assembly of documents 
according to product 
configuration is essential. 

Reusability, 
usability, 
variability 
identification 

DPL, DITA 95, 32, 88 

Semantic web Usually used 
where rule bases 
are common or for 
personalization or 
inter-operability. 

Usage of ontologies to 
improve semantic 
interoperability, knowledge 
graphs for generating 
inferences for document 
assembly. 

Semantic web 
technology is 
used. 

XML, Custom 
software 

71, 117, 77, 
8, 92, 119 

  



Moreover, certain emerging research trends were identified as a part of the survey: 

 Personalization has been an emerging field of research in document automation. Documents can 
be personalized in the content authoring part or in the document assembly part. For example, the 
Document Product Line architecture was employed to deliver personalized tax forms by 
assembling the document based on the variability points selected by the users. Similarly an 
ontology context model was built to personalize the textual content of public communications 
based on user profile.  

 Another theme that can be observed in the reviewed studies is the use of semantic web 
technologies such as RDF and OWL to perform some level of reasoning over the document 
content for compliance and auditing purposes and also to automatically assess document quality, 
structure and formatting against certain policies and standards.  

4.2 JUPYTERNOTEBOOKS FOR DOCUMENT AUTOMATION
From a conventional documentation perspective, the Jupyter ecosystem, including Jupyter notebooks and 
the open-source utilities developed for notebooks, presents a great potential for its adoption as a 
documentation system. Due to the programmatic nature of Jupyter notebooks, they offer a variety of 
advantages in a DA workflow, such as the following:  

 Ability to retrieve information from external databases; 
 Ability to add more automation features using Python libraries such as ‘ipywidgets’, which offer 

graphical user interface control so the users can decide how their documents should be composed 
or modified, making the documentation process easier; 

 Ability to offer advanced features, such as collaboration and authentication, in Jupyter notebooks; 
 Support for enterprise scalability provided through JupyterHub; 
 Open-source support and active development of Jupyter notebooks and associated utilities;  
 Support for a wide variety of programmatic languages that can work with notebook’s underlying

standard format, i.e. JSON. Working with this format in the notebook-based DA systems is more 
convenient than working with XML, which is common in many DA systems. The JSON 
representation makes it easier to configure and modify notebooks, encouraging the development 
of a host of tools for merging, processing and validating notebooks. Jupyter notebooks 
successfully achieve all three promises put forward by XML-based architectures: 

o Jupyter notebooks along with templating engines ensure the separation of content from 
presentation/formatting.  

o Text can be added uniformly in Markdown and converted to the final document format 
(Latex/PDF/HTML/DOCX) using Pandoc (MacFarlane 2012).  

o The requirement of a specialized markup is obviated by the fact that HTML and Latex 
can be directly added into ‘Markdown cells’ of Jupyter notebooks, which are then
processed by Pandoc (although with some limitations related to cross-conversion). Any 
special markup requirement can also be handled programmatically through post-
processing the templating engine conversion output or directly modifying the conversion 
process.  

The biggest advantage of the Jupyter ecosystem is its open-source nature and its use of JSON as the 
notebook document format. These advantages facilitate the ecosystem’s constant development.  

However, some aspects of Jupyter notebooks present challenges in wide-spread adoption of notebooks 
purely for documentation purposes:  



 The prominent one is providing graphical text editing capabilities.
 The start-up time and effort for Jupyter notebook is way beyond the expectation for a 

documentation tool.  
 Finally reusability needs to be addressed directly, allowing content reuse from other notebooks, 

and possibly other sources.  

A variety of solutions, including Notebook Extensions and JupyterLab, may be utilized to address some 
of these challenges. 

Overall, the Jupyter ecosystem has a promising future in the documentation sphere and we expect to see 
more features and developments which may facilitate faster and easier documentation workflows. 

4.3 FUTURE RESEARCH DIRECTIONS

4.3.1 AI for document automation
As more innovative machine learning and AI technologies emerge, there are opportunities to enhance 
functionality, efficiency and usability of DA tools and supporting tasks: 

Document intelligence 
AI/ML for document reading, document understanding, document analysis, information extraction, 
question answering, document structure analysis, computer vision, natural text understanding. For a 
discussion on document intelligence research opportunities, see Motahari et al. (2019) at NeurIPS 2019.  

Intelligent document process awareness 
(1) Automatically anticipate and mitigate document workflow exceptions; (2) Automatically identify 
changes in input data types and schema and make dynamic process changes; (3) Automatically find and 
fix missing or incorrect information in the document; (4) Automatically update user guides based on any 
changes in the product.  

Intelligent document processes optimization 
(1) Automatically suggest and make modifications to document processes to improve overall flow; (2) 
Automatically learn from past usage logs to figure out better ways to handle document workflows and 
processes; (3) Automatic orchestration of multiple bots to optimize documentation processes. 

Neural NLG 
High quality data-to-text generation utilizing the latest advances in deep neural networks including 
transformer architectures based on language models (e.g. BERT and GPT2). Dale (2020) in his review of 
commercial NLG tools notes that existing commercial NLG technologies for data-into-text generation are 
conceptually very simple, but effective and useful for many business use cases. He envisages a future for 
NLG technology which is “a completely different beast, which will see its application in quite different 
contexts. In particular, neural NLG is set to redefine our notion of authorship. The neural NLG trends 
indicate that considerably high proportion of texts in the future can be co-authored with machine 
assistance.” (Dale 2020)  

4.3.2 Making technologies user- and developer- friendly
XML/RDF/ontologies are very potent but have not been adopted very quickly as they are hard to learn 
and work with. One of the reasons for the popularity and quick development of Jupyter notebooks is that 
it is based on JSON, which is simple and easy to work with.  



DA technologies should be UI oriented and end-user friendly. The fruits of XML can reach the masses
only when it is behind a very intuitive UI and does not expect them to code in raw XML. Hence more 
effort is needed to develop tools which not only make the development of document automation 
workflows easier, but also make it easier for the end-user. 

4.3.3 Exploring semantic web technology for inter-operability
Establishing an ontology for the document schema used, if not existent already can be a step towards 
achieving enterprise-wide semantic interoperability. This will entail seamless flow of data from one 
department to the other through documents, which can be easily parsed and modified. Enterprise 
knowledge graphs can also serve as a source for direct content for the documents or can be used to 
generate inferences which affect how the document is assembled. 

4.3.4 Integration with domain specific information systems
Domain specific information systems and repositories need better integration with standard 
documentation technologies. This will allow common DA technologies such as XML to easily pull and 
push data from such repositories eliminating the manual overhead for users. The changes in the central 
repository of data should be traceable to the resulting change in a relevant document. Dual traceability 
should also be established, taking inspiration from MDE based documentation systems. Changes in 
documents should get replicated in the central data repository and should be traceable, along with the 
conventional route of changes in repository getting replicated in documents. This will allow seamless 
flow of information between documents and repositories of data. 

5 REFERENCES
1. Bangalore, S. and Rambow, O., 2000. Exploiting a probabilistic hierarchical model for 

generation. In COLING 2000 Volume 1: The 18th International Conference on Computational 
Linguistics. 

2. Barbosa, D., Mendelzon, A., Keenleyside, J. and Lyons, K., 2002. ToXgene: a template-based 
data generator for XML. In Proceedings of the 2002 ACM SIGMOD International Conference on 
Management of Data. 

3. Bavaresco, R., Silveira, D., Reis, E., Barbosa, J., Righi, R., Costa, C., Antunes, R., Gomes, M., 
Gatti, C., Vanzin, M. and Silva, E., 2020. Conversational agents in business: A systematic 
literature review and future research directions. Computer Science Review, 36, p.100239. 

4. Bateman, J.A., 1997. Enabling technology for multilingual natural language generation: the 
KPML development environment. Natural Language Engineering, 3(1), pp.15-55. 

5. Beg, M., Taka, J., Kluyver, T., Konovalov, A., Ragan-Kelley, M., Thiéry, N.M. and Fangohr, H., 
2021. Using Jupyter for reproducible scientific workflows. Computing in Science & 
Engineering, 23(2), pp.36-46. 

6. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., 
Shyam, P., Sastry, G., Askell, A. and Agarwal, S., 2020. Language models are few-shot 
learners. arXiv preprint arXiv:2005.14165. 

7. Chammard, T.B., Regalia, B., Karban, R. and Gomes, I., 2020. Assisted authoring of model-
based systems engineering documents. In Proceedings of the 23rd ACM/IEEE International 
Conference on Model Driven Engineering Languages and Systems: Companion Proceedings (pp. 
1-7). 

8. Colineau, N., Paris, C. and Vander Linden, K., 2013. Automatically producing tailored web 
materials for public administration. New Review of Hypermedia and Multimedia, 19(2), pp.158-
181. 



9. Comoretto, G., Guy, L., O'Mullane, W., Bechtol, K., Carlin, J.L., Van Klaveren, B., Roberts, A. 
and Sick, J., 2020. Documentation automation for the verification and validation of Rubin 
Observatory software. In Modeling, Systems Engineering, and Project Management for 
Astronomy IX (Vol. 11450, p. 114500E). International Society for Optics and Photonics. 

10. Cote, M., Rezvanifar, A. and Albu, A.B., 2020. Automatic Generation of Electrical Plan 
Documents from Architectural Data. In Proceedings of the ACM Symposium on Document 
Engineering 2020 (pp. 1-4). 

11. Dale, R., 2019. Law and word order: NLP in legal tech. Natural Language Engineering, 25(1), 
pp.211-217. 

12. Dale, R., 2020. Natural language generation: The commercial state of the art in 2020. Natural 
Language Engineering, 26(4), pp.481-487. 

13. Deemter, K.V., Theune, M. and Krahmer, E., 2005. Real versus template-based natural language 
generation: A false opposition?. Computational Linguistics, 31(1), pp.15-24. 

14. Delp, C., Lam, D., Fosse, E. and Lee, C.Y., 2013. Model based document and report generation 
for systems engineering. In 2013 IEEE Aerospace Conference (pp. 1-11). IEEE. 

15. Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 2018. Bert: Pre-training of deep 
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. 

16. Dominici, M., 2014. An overview of Pandoc. TUGboat, 35(1), pp.44-50. 
17. Dušek, O. and Jurcicek, F., 2015. Training a natural language generator from unaligned data.

In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and 
the 7th International Joint Conference on Natural Language Processing (Volume 1: Long 
Papers) (pp. 451-461). 

18. Dušek, O. and Jurčíček, F., 2016. Sequence-to-sequence generation for spoken dialogue via deep 
syntax trees and strings. arXiv preprint arXiv:1606.05491. 

19. Dušek, O., Novikova, J. and Rieser, V., 2020. Evaluating the state-of-the-art of end-to-end natural 
language generation: The e2e nlg challenge. Computer Speech & Language, 59, pp.123-156. 

20. Eito-Brun, R., 2020. An Automated Pipeline for the Generation of Quality Reports. In European 
Conference on Software Process Improvement (pp. 706-714). Springer, Cham. 

21. Elhadad, M. and Robin, J., 1996. An overview of SURGE: A reusable comprehensive syntactic 
realization component. 

22. El-Kassas, W.S., Salama, C.R., Rafea, A.A. and Mohamed, H.K., 2020. Automatic text 
summarization: A comprehensive survey. Expert Systems with Applications, p.113679. 

23. Feng, Z., 2013. Functional Grammar and Its Implications for English Teaching and 
Learning. English Language Teaching, 6(10), pp.86-94. 

24. Ferreira, T.C., Calixto, I., Wubben, S. and Krahmer, E., 2017. Linguistic realisation as machine 
translation: Comparing different MT models for AMR-to-text generation. In Proceedings of the 
10th International Conference on Natural Language Generation (pp. 1-10). 

25. Fielding, R.T., 2000. Architectural styles and the design of network-based software 
architectures (Vol. 7). Irvine: University of California, Irvine. 

26. Gardent, C., Shimorina, A., Narayan, S. and Perez-Beltrachini, L., 2017. The WebNLG 
challenge: Generating text from RDF data. In Proceedings of the 10th International Conference 
on Natural Language Generation (pp. 124-133). 

27. Gatt, A. and Reiter, E., 2009. SimpleNLG: A realisation engine for practical applications. 
In Proceedings of the 12th European Workshop on Natural Language Generation (ENLG 
2009) (pp. 90-93). 

28. Gatt, A. and Krahmer, E., 2018. Survey of the state of the art in natural language generation: Core 
tasks, applications and evaluation. Journal of Artificial Intelligence Research, 61, pp.65-170. 

29. Gatt, A., Portet, F., Reiter, E., Hunter, J., Mahamood, S., Moncur, W. and Sripada, S., 2009. 
From data to text in the neonatal intensive care unit: Using NLG technology for decision support 
and information management. AI Communications, 22(3), pp.153-186. 



30. Glaser, I., Huynh, T., Klymenko, O., Labrenz, B. and Matthes, F., 2020. Legal Document 
Automation Tool Survey 2020. The Technical University of Munich. Munich, Germany. 

31. Glushko, R.J. and McGrath, T., 2008. Document Engineering: Analyzing and Designing 
Documents for Business Informatics and Web Services. MIT Press. Cambridge, MA. 

32. Gómez, A., Penadés, M.C., Canós, J.H., Borges, M.R. and Llavador, M., 2014. A framework for 
variable content document generation with multiple actors. Information and Software 
Technology, 56(9), pp.1101-1121. 

33. Gong, H., Bi, W., Feng, X., Qin, B., Liu, X. and Liu, T., 2020. Enhancing Content Planning for 
Table-to-Text Generation with Data Understanding and Verification. In Proceedings of the 2020 
Conference on Empirical Methods in Natural Language Processing: Findings (pp. 2905-2914). 

34. Gottesman, B., 2008. Introduction to Meaning-Text Theory, http://www.coli.uni-
saarland.de/~tania/CMGD/Ben.Gottesman.pdf  (Accessed 15.5.2021). 

35. Hackos, J.T., 2016. International standards for information development and content 
management. IEEE Transactions on Professional Communication, 59(1), pp.24-36. 

36. Halliday, M.A.K. and Matthiessen, C.M., 2013. Halliday's introduction to functional grammar. 
Routledge. 

37. Henderson, M.L., Krinsman, W., Cholia, S., Thomas, R. and Slaton, T., 2019. Accelerating 
Experimental Science Using Jupyter and NERSC HPC. In Tools and Techniques for High 
Performance Computing (pp. 145-163). Springer. 

38. Henley, B.K., 2020. Document Assembly: What It Is and How to Evaluate Competing Programs, 
Law Practice, 46, p.30. 

39. Hitzler, P., 2021. A review of the semantic web field. Communications of the ACM, 64(2), pp.76-
83. 

40. Höhenberger, S. and Scholta, H., 2017. Will Government Forms Ever be Consistent? Detecting 
Violations in Form Structures by Utilizing Graph Theory. 

41. Hripcsak, G., 1994. Writing Arden Syntax medical logic modules. Computers in Biology and 
Medicine, 24(5), pp.331-363. 

42. Ittoo, A. and van den Bosch, A., 2016. Text analytics in industry: Challenges, desiderata and 
trends. Computers in Industry, 78, pp.96-107. 

43. Juneau, S., Olsen, K., Nikutta, R., Jacques, A. and Bailey, S., 2021. Jupyter-enabled astrophysical 
analysis using data-proximate computing platforms. Computing in Science & Engineering, 23(2), 
pp.15-25. 

44. Kahane, S., 1984. The meaning-text theory. 
45. Kale, M., 2020. Text-to-text pre-training for data-to-text tasks. arXiv preprint arXiv:2005.10433. 
46. Kasper, R.T., 1989. A flexible interface for linking applications to PENMAN’s sentence

generator. In Speech and Natural Language: Proceedings of a Workshop Held at Philadelphia, 
Pennsylvania, February 21-23, 1989. 

47. Kay, M., 1984. Functional unification grammar: A formalism for machine translation. In 10th 
International Conference on Computational Linguistics and 22nd Annual Meeting of the 
Association for Computational Linguistics (pp. 75-78). 

48. Kim, S., Haug, P.J., Rocha, R.A. and Choi, I., 2008. Modeling the Arden Syntax for medical 
decisions in XML. International Journal of Medical Informatics, 77(10), pp.650-656. 

49. Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B.E., Bussonnier, M., Frederic, J., Kelley, K., 
Hamrick, J.B., Grout, J., Corlay, S. and Ivanov, P., 2016. Jupyter Notebooks-a publishing format 
for reproducible computational workflows. In Proceedings of the 20th International Conference 
on Electronic Publishing (Vol. 2016, pp. 87-90). 

50. Kraus, S., Castellanos, I., Albermann, M., Schuettler, C., Prokosch, H.U., Staudigel, M. and 
Toddenroth, D., 2016. Using Arden Syntax for the Generation of Intelligent Intensive Care 
Discharge Letters. In MIE (pp. 471-475).  

51. Kraus, S., 2018. Generalizing the Arden Syntax to a Common Clinical Application Language. 
In MIE (pp. 675-679). 



52. Kraus, S., Toddenroth, D., Unberath, P., Prokosch, H.U. and Hueske-Kraus, D., 2019. An 
Extension of the Arden Syntax to Facilitate Clinical Document Generation. Studies in Health 
Technology and Informatics, 259, pp.65-70. 

53. Lang, D.T., 2001. Embedding S in other languages and environments. In Proceedings of 
DSC (Vol. 2, p. 1). 

54. Langkilde, I. and Knight, K., 1998. The practical value of n-grams is in generation. In Natural 
Language Generation. 

55. Langkilde, I., 2000. Forest-based statistical sentence generation. In 1st Meeting of the North 
American Chapter of the Association for Computational Linguistics. 

56. Lankester, R., 2018. Implementing Document Automation: Benefits and Considerations for the 
Knowledge Professional. Legal Information Management, 18(2), pp.93-97. 

57. Lau, S. and Hug, J., 2018. Nbinteract: Generate interactive web pages from Jupyter 
notebooks. Technical Report No. UCB/EECS-2018-57, Electrical Engineering and Computer 
Sciences, University of California at Berkeley. 

58. Lauritsen, M., 2007. Current frontiers in legal drafting systems. In Proceedings of the 11th 
International Conference on AI and Law. 

59. Lauritsen, M., 2012. Document Automation. Online course on “Topics in Digital Law Practice”
by Center for Computer-Assisted Legal Instruction. 

60. Lauritsen, M. and Steenhuis, Q., 2019. Substantive Legal Software Quality: A Gathering Storm?. 
In Proceedings of the Seventeenth International Conference on Artificial Intelligence and 
Law (pp. 52-62). 

61. Lavoie, B. and Rainbow, O., 1997. A fast and portable realizer for text generation systems. 
In Fifth Conference on Applied Natural Language Processing (pp. 265-268). 

62. Lehtonen, M., Petit, R., Heinonen, O. and Lindén, G., 2002. A dynamic user interface for 
document assembly. In Proceedings of the 2002 ACM Symposium on Document Engineering (pp. 
134-141). 

63. Leisch, F., 2002. Sweave: Dynamic generation of statistical reports using literate data analysis. 
In Compstat (pp. 575-580). Physica, Heidelberg. 

64. Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V. and 
Zettlemoyer, L., 2019. Bart: Denoising sequence-to-sequence pre-training for natural language 
generation, translation, and comprehension. arXiv preprint arXiv:1910.13461. 

65. Li, J., Tang, T., Zhao, W.X. and Wen, J.R., 2021a. Pretrained Language Models for Text 
Generation: A Survey. arXiv preprint arXiv:2105.10311. 

66. Li, J., Tang, T., Zhao, W.X., Wei, Z., Yuan, N.J. and Wen, J.R., 2021b. Few-shot knowledge 
graph-to-text generation with pretrained language models. arXiv preprint arXiv:2106.01623. 

67. Lipton, Z.C., Vikram, S. and McAuley, J., 2015. Generative concatenative nets jointly learn to 
write and classify reviews. arXiv preprint arXiv:1511.03683. 

68. MacFarlane, J., 2012. Pandoc User’s Guide. www.pandoc.org (Accessed 15.5.2021). 
69. Mager, M., Astudillo, R.F., Naseem, T., Sultan, M.A., Lee, Y.S., Florian, R. and Roukos, S., 

2020. GPT-too: A language-model-first approach for AMR-to-text generation. arXiv preprint 
arXiv:2005.09123. 

70. Mann, W.C., 1983, August. An overview of the Penman text generation system. In AAAI (pp. 
261-265). 

71. Marković, M. and Gostojić, S., 2020. A knowledge-based document assembly method to support 
semantic interoperability of enterprise information systems. Enterprise Information Systems, 
pp.1-20. 

72. McRoy, S.W., Channarukul, S. and Ali, S.S., 2003. An augmented template-based approach to 
text realization. Natural Language Engineering, 9(4), p.381. 

73. Menezes, J.A., da Silva, A.R. and de Sousa Saraiva, J., 2019. Citizen-Centric and Multi-Curator 
Document Automation Platform: the Curator Perspective. In the 28th International Conference on 
Information Systems Development (ISD2019). 



74. Mi, L., Li, C., Du, P., Zhu, J., Yuan, X. and Li, Z., 2018. Construction and application of an 
automatic document generation model. In 2018 26th International Conference on 
Geoinformatics (pp. 1-6). IEEE. 

75. Michot, A., Ponsard, C. and Boucher, Q., 2018. Towards Better Document to Model 
Synchronisation: Experimentations with a Proposed Architecture. In MODELSWARD (pp. 567-
574). 

76. Minnen, G., Carroll, J. and Pearce, D., 2001. Applied morphological processing of 
English. Natural Language Engineering, 7(3), pp.207-223. 

77. Mirza, A.R. and Sah, M., 2017. Automated software system for checking the structure and format 
of ACM SIG documents. New Review of Hypermedia and Multimedia, 23(2), pp.112-140. 

78. Monshi, M.M.A., Poon, J. and Chung, V., 2020. Deep learning in generating radiology reports: A 
survey. Artificial Intelligence in Medicine, p.101878. 

79. Motahari, H., Duffy, N., Bennett, P. and Bedrax-Weiss, T., 2021. A Report on the First 
Workshop on Document Intelligence (DI) at NeurIPS 2019. ACM SIGKDD Explorations 
Newsletter, 22(2), pp.8-11. 

80. Nicolás, J. and Toval, A., 2009. On the generation of requirements specifications from software 
engineering models: A systematic literature review. Information and Software Technology, 51(9), 
pp.1291-1307. 

81. Nielsen, J., 1994. Enhancing the explanatory power of usability heuristics. In Proceedings of the 
SIGCHI conference on Human Factors in Computing Systems (pp. 152-158). 

82. Nurseitov, N., Paulson, M., Reynolds, R. and Izurieta, C., 2009. Comparison of JSON and XML 
data interchange formats: a case study. Caine, 9, pp.157-162. 

83. O’Donnell, M., 1997. Variable-length on-line document generation. In the Proceedings of the 6th 
European Workshop on Natural Language Generation, Gerhard-Mercator University, Duisburg, 
Germany. 

84. Ono, K., Koyanagi, T., Abe, M. and Hori, M., 2002. XSLT stylesheet generation by example with 
WYSIWYG editing. In Proceedings 2002 Symposium on Applications and the Internet (SAINT 
2002) (pp. 150-159). IEEE. 

85. Palmirani, M. and Governatori, G., 2018, December. Modelling Legal Knowledge for GDPR 
Compliance Checking. In JURIX (pp. 101-110). 

86. Palmirani, M. and Vitali, F., 2011. Akoma-Ntoso for legal documents. In Legislative XML for the 
semantic Web (pp. 75-100). Springer, Dordrecht. 

87. Parikh, A.P., Wang, X., Gehrmann, S., Faruqui, M., Dhingra, B., Yang, D. and Das, D., 2020. 
Totto: A controlled table-to-text generation dataset. arXiv preprint arXiv:2004.14373. 

88. Penadés, M.C., Martí, P., Canós, J.H. and Gómez, A., 2014. Product Line-based customization of 
e-Government documents. In PEGOV 2014: Personalization in e-Government Services, Data and 
Applications (Vol. 1181). CEUR-WS. 

89. Pérez, F. and Granger, B.E., 2007. IPython: a system for interactive scientific 
computing. Computing in Science & Engineering, 9(3), pp.21-29. 

90. Pérez, F. and Granger, B.E., 2017. The state of Jupyter: How Project Jupyter got here and where 
we are headed. Available at: https://www.oreilly.com/radar/the-state-of-jupyter (Accessed 
15.5.2021). 

91. Perkel, J.M., 2018. Why Jupyter is data scientists' computational notebook of 
choice. Nature, 563(7732), pp.145-147. 

92. Pikus, Y., Weißenberg, N., Holtkamp, B. and Otto, B., 2019. Semi-automatic ontology-driven 
development documentation: generating documents from RDF data and DITA templates. 
In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (pp. 2293-2302). 

93. Pimentel, J.F., Murta, L., Braganholo, V. and Freire, J., 2021. Understanding and improving the 
quality and reproducibility of Jupyter notebooks. Empirical Software Engineering, 26(4), pp.1-
55. 

94. Poore, G.M., 2019. Codebraid: Live Code in Pandoc Markdown. 



95. Priestley, M., Hargis, G. and Carpenter, S., 2001. DITA: An XML-based technical documentation 
authoring and publishing architecture. Technical communication, 48(3), pp.352-367. 

96. Radford, A., Narasimhan, K., Salimans, T. and Sutskever, I., 2018. Improving language 
understanding by generative pre-training. 

97. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. and Sutskever, I., 2019. Language models 
are unsupervised multitask learners. OpenAI blog, 1(8), p.9. 

98. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W. and Liu, 
P.J., 2019. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv 
preprint arXiv:1910.10683. 

99. Ragan-Kelley, B., Walters, W.A., McDonald, D., Riley, J., Granger, B.E., Gonzalez, A., Knight, 
R., Perez, F. and Caporaso, J.G., 2013. Collaborative cloud-enabled tools allow rapid, 
reproducible biological insights. The ISME journal, 7(3), pp.461-464. 

100. Reiter, E., 1995. NLG vs. Templates. arXiv preprint cmp-lg/9504013. 
101. Reiter, E. and Dale, R., 2000. Building Natural Language Generation 

Systems. Cambridge University Press. 
102. Reiter, E., Mellish, C. and Levine, J., 1995. Automatic generation of technical 

documentation. Applied Artificial Intelligence an International Journal, 9(3), pp.259-287. 
103. Reiter. E., 2016. NLG vs Templates: Levels of Sophistication in Generating Text. 

https://ehudreiter.com/2016/12/18/nlg-vs-templates/ (Accessed 15.5.2021). 
104. Rong, G., Jin, Z., Zhang, H., Zhang, Y., Ye, W. and Shao, D., 2019. DevDocOps: 

Towards automated documentation for DevOps. In 2019 IEEE/ACM 41st International 
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP) (pp. 243-
252). IEEE. 

105. Sewell, C., 2017, IPyPublish: A package for creating and editing publication ready 
scientific reports and presentations from Jupyter Notebooks. 
https://ipypublish.readthedocs.io/en/latest/ (Accessed 15.5.2021). 

106. Sifa, R., Ladi, A., Pielka, M., Ramamurthy, R., Hillebrand, L., Kirsch, B., Biesner, D., 
Stenzel, R., Bell, T., Lübbering, M. and Nütten, U., 2019. Towards automated auditing with 
machine learning. In Proceedings of the ACM Symposium on Document Engineering 2019 (pp. 1-
4). 

107. Sripada, S., Burnett, N., Turner, R., Mastin, J. and Evans, D., 2014, June. A case study: 
NLG meeting weather industry demand for quality and quantity of textual weather forecasts. 
In Proceedings of the 8th International Natural Language Generation Conference (INLG) (pp. 1-
5). 

108. Sutskever, I., Martens, J. and Hinton, G.E., 2011. Generating text with recurrent neural 
networks. In ICML. 

109. Sutskever, I., Vinyals, O. and Le, Q.V., 2014. Sequence to sequence learning with neural 
networks. arXiv preprint arXiv:1409.3215. 

110. Tang, J., Yang, Y., Carton, S., Zhang, M. and Mei, Q., 2016. Context-aware natural 
language generation with recurrent neural networks. arXiv preprint arXiv:1611.09900. 

111. Third, A., Williams, S. and Power, R., 2011. OWL to English: a tool for generating 
organised easily-navigated hypertexts from ontologies. In 10th International Semantic Web 
Conference (ISWC 2011), 23-27 Oct 2011, Bonn, Germany. 

112. Torre, D., Lachmann, A. and Ma’ayan, A., 2018. BioJupies: automated generation of
interactive notebooks for RNA-Seq data analysis in the cloud. Cell Systems, 7(5), pp.556-561. 

113. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. 
and Polosukhin, I., 2017. Attention is all you need. arXiv preprint arXiv:1706.03762. 

114. Wen, E. and Weber, G., 2018. SwiftLaTeX: Exploring Web-based True WYSIWYG 
Editing for Digital Publishing. In Proceedings of the ACM Symposium on Document Engineering 
2018 (pp. 1-10). 



115. Wiseman, S., Shieber, S.M. and Rush, A.M., 2017. Challenges in data-to-document 
generation. arXiv preprint arXiv:1707.08052. 

116. Yang, S., Wei, R. and Shigarov, A., 2018. Semantic interoperability for electronic 
business through a novel cross-context semantic document exchange approach. In Proceedings of 
the ACM Symposium on Document Engineering 2018 (pp. 1-10). 

117. Yang, S. and Wei, R., 2020. Semantic Interoperability Through a Novel Cross-Context 
Tabular Document Representation Approach for Smart Cities. IEEE Access, 8, pp.70676-70692. 

118. Yu, J., McCluskey, K. and Mukherjee, S., 2020. Tax Knowledge Graph for a Smarter and 
More Personalized TurboTax. arXiv preprint arXiv:2009.06103. 

119. Constantin, A., Peroni, S., Pettifer, S., Shotton, D. and Vitali, F., 2016. The document 
components ontology (DoCO). Semantic Web, 7(2), pp.167-181. 

 
 


